Advisor(s)

Vishal R. Mehta, PhD
Ohio Northern University
Mechanical Engineering
v-mehta@onu.edu

Document Type

Video

Start Date

23-4-2021 9:00 AM

Description

Optical properties of dielectrics play a critical role in various applications including the design and manufacture of optical components & devices such as detectors, filters, imagers, lenses, optical coatings, photonic crystals, sensors and waveguides, and solar cells. Radiative properties of varying thicknesses of different dielectrics such as Aluminum Oxide (Al2O3), Silicon Dioxide (SiO2), Indium Tin Oxide (ITO), Magnesium Fluoride (MgF2) and Silicon Nitride (Si3N4) have been simulated and compared in the range of visible to near infrared by mathematical modelling using MATLAB simulations. The results of the evolution of the radiative properties, as a function of dielectric material thickness, on silicon absorber will be presented.

Open Access

Available to all.

Share

COinS
 
Apr 23rd, 9:00 AM

Simulation of optical properties of dielectric layers from visible to near infrared spectral range

Optical properties of dielectrics play a critical role in various applications including the design and manufacture of optical components & devices such as detectors, filters, imagers, lenses, optical coatings, photonic crystals, sensors and waveguides, and solar cells. Radiative properties of varying thicknesses of different dielectrics such as Aluminum Oxide (Al2O3), Silicon Dioxide (SiO2), Indium Tin Oxide (ITO), Magnesium Fluoride (MgF2) and Silicon Nitride (Si3N4) have been simulated and compared in the range of visible to near infrared by mathematical modelling using MATLAB simulations. The results of the evolution of the radiative properties, as a function of dielectric material thickness, on silicon absorber will be presented.