Intersection Illumination – Collision Correlation: How does street lighting affect roadway safety?

Josh R. Pinchek
Ohio Northern University

Follow this and additional works at: https://digitalcommons.onu.edu/aurora

Part of the Civil and Environmental Engineering Commons

Recommended Citation
Pinchek, Josh R. (2020) "Intersection Illumination – Collision Correlation: How does street lighting affect roadway safety?," Aurora: The Research Journal of Ohio Northern University: Vol. 1 : Iss. 1 , Article 4. Available at: https://digitalcommons.onu.edu/aurora/vol1/iss1/4

This Article is brought to you for free and open access by the ONU Journals and Publications at DigitalCommons@ONU. It has been accepted for inclusion in Aurora: The Research Journal of Ohio Northern University by an authorized editor of DigitalCommons@ONU. For more information, please contact digitalcommons@onu.edu.
Intersection Illumination – Collision Correlation
How does street lighting affect roadway safety?

By: Josh Pinchek Advisor: Dr. Bryan Boulanger
Ohio Northern University - Department of Civil & Environmental Engineering

Abstract
Understanding the relationship between roadway intersection safety and street lighting is essential to developing effective intersection lighting standards. This study uses data from the Ohio Department of Transportation’s (ODOT) Accident Databases (1 million+ accidents over 10 years) to explore the relationship between street lamps and accident occurrence via comparative statistics.

Accident occurrence ratios, calculated based upon seasonally categorized, time-matched accident data are compared and reported with and without artificial lighting as a variable. The results of the study indicate that artificial lighting is an important factor on accident rate occurrence via a correlation between lighting and roadway safety, guiding the opportunity for more research to recommend future lighting standards at Ohio’s intersections.

Methodology & Experiment
Collecting Accident Information
Information and characteristics for 1 million intersection accidents from 10 years of data was downloaded from ODOT accident databases.

Screening Data to Create Independent Data Sets
The dataset was screened to focus on the impact of lighting conditions for accidents occurring Monday-Friday during:

- 2-4PM 6-8PM 9-11PM
 - Summer Daylight Daylight Darkness
 - Winter Daylight Darkness Darkness

Accidents involving DUI and poor conditions were removed.

Calculation of Accident Ratios
Accident ratios were calculated to evaluate and compare:
- Impact of artificial lighting on accident occurrence
- Effects of seasonality during consistent time comparisons

Analysis of Ratios to Determine the Impact of Lighting
Ratios were analyzed, compared, and interpreted to draw conclusions concerning the impact of lighting on accident ratios compared based on lighting conditions.

Introduction
Presently, standards on intersection lighting are lacking nationwide and in Ohio. Only suggested guidelines on where to place street lamps and what type to use at certain intersections are currently available from sources including the Federal Highway Administrations (FHWA) Lighting Handbook.

With an average of 1.27 million accidents occurring at Ohio’s intersections each year, improving intersection safety is imperative. Ohio crash statistics show that 0.11 accidents occur per person per year in Ohio. Any improvement in roadway safety would theoretically see this ratio decrease.

Thus, the goal of this study is to analyze Ohio’s crash data by isolating variables such as artificial lighting in order to determine a potential correlation between street lighting and accident rates.

Key Assumptions and Definitions
Assumptions
- Traffic volumes throughout Ohio’s intersections are equivalent during winter and summer months
- 6-8 PM serves as a ambient light liaison reference period for evaluation (daylight in summer and darkness during winter)

Definitions
- "Accident" – a vehicle collision with another vehicle, foreign object, animal, or pedestrian.
- "Lighted" - presence of an artificial light source (street lamp).
- "Daylighting" - natural light present during the day.
- "Dark" - nighttime conditions with no daylight present and no artificial light sources.

Results and Discussion

Conclusions
Key results indicate
- Observed differences in accident ratios occurring during evening hours in the summer and winter are due to accidents at intersections absent of lighting.
- This study suggests that adding artificial lighting to intersections is an effective means of simulating ambient daylight and reducing accident occurrence.

These findings are in agreement with nationally available data indicating that daytime driving is statistically safer than nighttime driving (demonstrated by fewer fatalities per daily vehicle miles travelled).
This study also addresses general trends for Ohio intersections as a whole, rather than individual intersections or particular artificial lighting scenarios. Therefore, additional research is needed to understand the influence of intersection lighting on individual intersection accidents.

References
"Crash Analysis Module (CAM) Tool" ODOT 2019
Federal Highway Administration, U.S. DOT
"Functional Class Inventory" ODOT 2016
"GIS Crash Analysis Tool (GCAT)" ODOT 2019
"Traffic Information Mapping System (TIMS)" ODOT 2019
"Transportation Data Management System" ODOT 2019

Acknowledgements
The authors would like to thank Drs. Robinson and Wang and Corey Thrush from ONU’s Statistics Program for their conversation and direction throughout the project. We would also like to thank Dr. Ye from ONU’s Department of Civil and Environmental Engineering as well as Becky Salak and Michael McNell from the ODOT for discussions concerning accident databases and the information they contain.